Skew bracoids and Hopf-Galois structures

Paul Truman

Keele University, UK

Hopf algebras and Galois module theory 30th May, 2023

Overview

• Joint work with Isabel Martin-Lyons

Aim

Last year we explored generalizing the definition of skew braces to give objects corresponding to Hopf-Galois structures on separable, but non-normal, extensions. This talk surveys developments in this theory.

- A route for constructing a skew brace from a Hopf-Galois structure on a Galois extension.
- Generalizing to skew bracoids
- Characterizations and γ -functions
- Ideals and quotients
- Hopf-Galois structures and the Hopf-Galois correspondence

The names they are a-changing

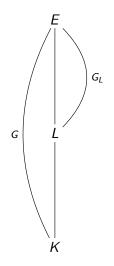
- Weak skew braces
- Near skew braces
- Neo-skew braces
- Skew bracoids

What else is new?

- Better tools for relating / comparing skew bracoids.
- Development of substructures / ideals / quotients.
- Improved formulations of homomorphisms / isomorphisms: up as far as First Isomorphism Theorem. (Not this talk)
- Tighter correspondence between skew bracoids and HGS on separable extensions: after Stefanello-Trappeniers.

Greither-Pareigis theory for non-normal extensions

- Let L/K be a separable extension of fields with Galois closure E.
- Write $G = \operatorname{Gal}(E/K)$ and $G_L = \operatorname{Gal}(E/L)$.
- Let $X = G/G_L$ and define $\lambda : G \to \text{Perm}(X)$ by $\lambda(g)[\overline{h}] = \overline{gh}$.
- Then G acts on Perm(X) by conjugation via λ .
- There is a bijection between G-stable regular subgroups of Perm(X) and Hopf-Galois structures on L/K.



The S-T route from a HGS to a skew brace

- Let L/K be a Galois extension with Galois group $G = (G, \cdot)$.
- Suppose that N is a regular G-stable subgroup of Perm(G).
- The map $N \to G$ defined by $\eta \mapsto \eta^{-1}[e_G]$ is a bijection.
- Transport the structure of N^{opp} to G via

$$\eta^{-1}[e_G] \star \mu^{-1}[e_G] = (\eta \mu)^{-1}[e_G].$$

• Then (G, \star) is a group isomorphic to N and

$$g \cdot (h_1 \star h_2) = (g \cdot h_1) \star g^{-1} \star (g \cdot h_2),$$

so (G, \star, \cdot) is a skew brace.

Mimicking the route in the non-normal case

- Now let L/K be separable, but non-normal, with Galois closure E.
- Suppose that N is a regular G-stable subgroup of Perm(X).
- The map $N \to X$ defined by $\eta \mapsto \eta^{-1}[\overline{e_G}]$ is a bijection.
- Transport the structure of N^{opp} to X via

$$\eta^{-1}[\overline{e_G}] \star \mu^{-1}[\overline{e_G}] = (\eta \mu)^{-1}[\overline{e_G}].$$

• Then (X, \star) is a group isomorphic to N and

$$g \odot (\overline{x_1} \star \overline{x_2}) = (g \odot \overline{x_1}) \star \overline{g}^{-1} \star (g \odot \overline{x_2}),$$

where \odot denotes left translation of cosets.

Skew bracoids

Definition

A skew bracoid is a 5-tuple $(G, \cdot, N, \star, \odot)$ where (G, \cdot) and (N, \star) are groups and \odot is a transitive action of (G, \cdot) on N such that

$$g \odot (\eta \star \mu) = (g \odot \eta) \star (g \odot e_N)^{-1} \star (g \odot \mu)$$
(*)

for all $g \in G$ and $\eta, \mu \in N$.

- Where possible, we write simply (G, N, \odot) , or even (G, N).
- For now, we always assume G, N are finite. Then |G| = |S||N|, where $S = \text{Stab}_G(e_N)$.
- Every skew brace is a skew bracoid, with \odot and \cdot coinciding.
- If |N| = |G| then (G, N) is essentially a skew brace.

An example

Example

- Let (G, \star, \cdot) be a skew brace and let H be a strong left ideal.
- *H* is a normal subgroup of (G, \star) , so $(G/H, \star)$ is a group.
- *H* is a subgroup of (*G*, ·), so (*G*, ·) acts by left translation on the coset space *G*/*H*. Write ⊙ for this action.
- Then $(G, \cdot, G/H, \star, \odot)$ is a skew bracoid.

Question

Does every skew bracoid occur in this way?

Some characterizations

Theorem

Let $(G, \cdot), (N, \star)$ be finite groups. The following are equivalent:

- A transitive action ⊙ of G on N such that (G, ·, N, ★, ⊙) is a skew bracoid;
- **2** a transitive subgroup A of Hol(N) isomorphic to a quotient of G;
- a homomorphism $\gamma : G \to Aut(N)$ and a surjective 1-cocycle $\pi : G \to N$.
 - The implication (1) \rightarrow (2) uses the permutation representation λ_{\odot} : $G \rightarrow \text{Perm}(N)$.
 - The implication (2) \rightarrow (3) gives rise to the γ -function of a skew bracoid.

Equivalence

Definition

Two skew bracoids (G, N) and (G', N') are called *equivalent* if N = N'and $\lambda_{\odot}(G) = \lambda_{\odot'}(G') \subseteq Hol(N)$.

• The analogous notion for skew braces is "equal".

Proposition

Let (N, \star) be a group. There is a bijective correspondence between transitive subgroups of Hol(N) and equivalence classes of skew bracoids (G, N).

Reduction

Definition

A skew bracoid (G, N) is called *reduced* if $\lambda_{\odot} : G \to Hol(N)$ is injective.

Proposition

- Let (G, N) be a skew bracoid.
 - Let $\overline{G} = G/\ker(\lambda_{\odot})$. Then (\overline{G}, N) is a reduced skew bracoid, which will be called the *reduced form* of (G, N).
 - Every skew bracoid is equivalent to its reduced form.

Example

If $(G, \cdot, G/H, \star, \odot)$ is a skew bracoid arising as a quotient of a skew brace by a strong left ideal then ker (λ_{\odot}) is the normal core of H in (G, \cdot) , so (G, G/H) is reduced if and only if H is core-free.

$\gamma\text{-functions}$

Proposition

Let (G, N) be a skew bracoid. Define $\gamma : G \rightarrow \mathsf{Perm}(N)$ by

$$^{\gamma(g)}\eta = (g \odot e_{\mathcal{N}})^{-1} \star (g \odot \eta)$$
 for all $g \in \mathcal{G}$ and $\eta \in \mathcal{N}$.

Then

- γ is a group homomorphism;
- $\gamma(G) \subseteq \operatorname{Aut}(N)$.
- Caranti begins with a group (G, ⋆) and uses γ : G → Perm(G) to characterize regular subgroups of Hol(G, ⋆), and hence skew braces (G, ⋆, ·) This approach does not seem to work well for transitive subgroups and skew bracoids.
- But see Stefanelli: affine structures etc.

Substructures

Definition

A subskew bracoid of a skew bracoid (G, N) consists of a subgroup H of G and a subgroup M of N such that (H, M) is a skew bracoid.

• It is possible for (G, N) to be reduced but for (H, M) to not be so.

Definition

A *left ideal* of a skew bracoid (G, N) is a subgroup M of N such that $\gamma^{(g)}M = M$ for all $g \in G$. An *ideal* is a left ideal M that is normal in N.

Proposition

If M is an ideal of (G, N) then (G, N/M) is a skew bracoid.

Ideals

Proposition

Let M be a left ideal of (G, N), and let

$$G_M = \{ g \in G \mid g \odot \mu \in M \text{ for all } \mu \in M \}.$$

Then (G_M, M) is a subskew bracoid of (G, N).

Proof.

It is clear that G_M is a subgroup of G. Let $G_M^{(e)} = \{g \in G \mid g \odot e_N \in M\}$. For all $g \in G$ and $\mu \in M$ we have

$$\gamma^{(g)}\mu = (g \odot e_N)^{-1} \star (g \odot \mu) \in M.$$

Hence $G_M^{(e)} = G_M$, so G_M is transitive on M.

Back to Hopf-Galois structures

If L/K is a Galois extension with Galois group (G, \cdot) , Stefanello and Trappeniers show that there is a bijection between

- binary operations \star on G such that (G, \star, \cdot) is a skew brace;
- Hopf-Galois structures on L/K,

and also that the Hopf-Galois structure corresponding to (G, \star, \cdot) is given by $L[G, \star]^{(G, \cdot)}$, acting via

$$\left(\sum_{g\in G}c_gg\right)[t]=\sum_{g\in G}c_gg[t].$$

Back to Hopf-Galois structures

Theorem

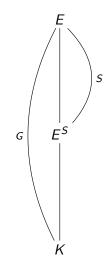
Let E/K be a finite Galois extension with Galois group (G, \cdot) , and let $S \leq G$. There is a bijection between

 binary operations ★ on X = G/S such that (G, ·, X, ★, ⊙) is a skew bracoid;

• Hopf-Galois structures on E^S/K .

Proof.

We have already seen how to get from a HGS on E^S/K to a skew bracoid $(G, \cdot, X, \star, \odot)$.



Back to Hopf-Galois structures

Proof continued...

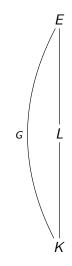
Conversely, given a skew bracoid of the form $(G, \cdot, X, \star, \odot)$, consider $\rho_{\star} : X \to \operatorname{Perm}(X)$ defined by $\rho_{\star}(\overline{x})[\overline{y}] = \overline{y} \star \overline{x}^{-1}$. Then $\rho_{\star}(X)$ is a regular subgroup of $\operatorname{Perm}(X)$, and

$$\begin{split} \lambda_{\odot}(g)\rho_{\star}(\overline{x})\lambda_{\odot}(g^{-1})[\overline{y}] &= g \odot \left((g^{-1} \odot \overline{y}) \star \overline{x}^{-1} \right) \\ &= \overline{y} \star (g \odot \overline{e})^{-1} \star (g \odot \overline{x}^{-1}) \\ &= \overline{y} \star \left((g \odot \overline{x})^{-1} \star (g \odot \overline{e}) \right) \\ &= \rho_{\star} \left((g \odot \overline{e})^{-1} \star (g \odot \overline{x}) \right) [\overline{y}] \\ &= \rho_{\star} \left(\gamma^{(g)} \overline{x} \right) [\overline{y}] \end{split}$$

So $\rho_{\star}(X)$ is G-stable, and therefore corresponds to a HGS on E^{S}/K .

A more familiar perspective

- What if we **begin** with a finite separable extension *L/K*?
- To study HGS, we usually take E to be the Galois closure of L/K.
- But we can choose a larger finite Galois extension *E*/*K*.
- A given HGS yields numerous skew bracoids, depending on *E*. It turns out that these are all equivalent.



Hopf algebras and subalgebras

If L/K is a Galois extension with Galois group (G, \cdot) and (G, \star, \cdot) is a skew brace, Stefanello and Trappeniers show that

- The intermediate fields realized by the HGS L[G, ★]^(G,·) correspond with left ideals of (G, ★, ·).
- If (G', \star, \cdot) is a left ideal of (G, \star, \cdot) then $L^{(G', \star)} = L^{(G', \cdot)}$.
- We obtain a quotient HGS on L^{G'}/K if and only if (G', ⋆, ·) is a strong left ideal, and a quotient skew brace if and only if (G', ⋆, ·) is an ideal.

Hopf algebras and subalgebras

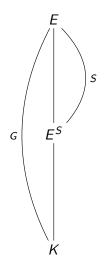
Now let E/K be Galois with group G, let $S \le G$, and let $L = E^S$. Let $(G, \cdot, X, \star, \odot)$ be a skew bracoid

Theorem

 The corresponding Hopf-Galois structure on E^S/K is given by E[X,*]^(G,·), acting via

$$\left(\sum_{\overline{x}\in X} c_{\overline{x}}\overline{x}\right)[t] = \sum_{\overline{x}\in X} c_{\overline{x}}\overline{x}[t].$$

continued...



Hopf algebras and subalgebras

Theorem (continued...)

- The intermediate fields realized by the HGS correspond with left ideals of (G, ·, X, ⋆, ⊙).
- The left ideals have the form X' = G'/S for certain $G' \leq (G, \cdot)$, and $L^{(X',\star)} = E^{(G',\cdot)}$.
- We obtain a quotient HGS on $L^{(X',\star)}/K$ and a quotient skew bracoid if and only if X' is an ideal.
- Since L^(X',⋆) = E^(G',⋅), the extension L^(X',⋆)/K is Galois if and only if G' is normal in G.

The natural questions

Question

Do skew bracoids have anything to do with groupoids?

• We think so, but we're not sure whether this perspective is beneficial.

Question

Are skew bracoids useful outside of their connection with Greither-Pareigis theory?

• We think they will have applications to classifying skew braces: e.g. via short exact sequences.

Question

Do skew bracoids have anything to do with the Yang-Baxter equation?

Tentatively: Yes!

Thank you for your attention.